Search here for all the info you want in this Blog

Heap Sort algorithm



public class HeapSort
{
 
public static void heapify(int a[],int i,int n)
{ 
 
int l=2*i+1;
int r=2*i+2;
 
 
int temp,largest;
 
if(la[i])
largest=l;
else
largest=i;
 
if(ra[largest])
largest=r;
 
if(largest !=i)
{
temp=a[largest];
a[largest]=a[i];
a[i]=temp;
 
heapify(a,largest,n);
}
 
 
}
 
public static void bheap(int a[])
{ 
 
for(int i=(a.length/2)-1;i>=0;i--)
{
 
heapify(a,i,a.length);
 
}
 
}
 
public static void Sort(int a[])
{ 
int temp,j,i;
 
bheap(a);
 
for( i=(a.length)-1; i>0;)
{
temp=a[0];
a[0]=a[i];
a[i]=temp;
heapify(a,0,i--) ;
 
}
 
} 
 
public static void printarray(int a[])
{
System.out.println();
for(int i=0; i < a.length; i++)
{
 
System.out.print(a[i]+" ");
}
 
}
public static void main(String[] args) 
{
int n, res,i;
Scanner s = new Scanner(System.in);
System.out.print("Enter number of elements in the array:");
n = s.nextInt();
int a[] = new int[n];
System.out.println("Enter "+n+" elements ");
for( i=0; i < n; i++)
{
a[i] = s.nextInt();
}
 
System.out.println( "elements in array ");
printarray(a);
Sort(a);
System.out.println( "\nelements after sorting");
printarray(a);
 
}
 
}   

Quick Sort algorithm



public class QuickSort {  
public static void main(String[] args) {  
        int i;  
        int[] arr={90,23,101,45,65,23,67,89,34,23};  
        quickSort(arr, 0, 9);  
        System.out.println("\n The sorted array is: \n");  
        for(i=0;i<10;i++)  
        System.out.println(arr[i]);  
    }  
    public static int partition(int a[], int beg, int end)  
    {  
          
        int left, right, temp, loc, flag;     
        loc = left = beg;  
        right = end;  
        flag = 0;  
        while(flag != 1)  
        {  
            while((a[loc] <= a[right]) && (loc!=right))  
            right--;  
            if(loc==right)  
            flag =1;  
            elseif(a[loc]>a[right])  
            {  
                temp = a[loc];  
                a[loc] = a[right];  
                a[right] = temp;  
                loc = right;  
            }  
            if(flag!=1)  
            {  
                while((a[loc] >= a[left]) && (loc!=left))  
                left++;  
                if(loc==left)  
                flag =1;  
                elseif(a[loc] <a[left])  
                {  
                    temp = a[loc];  
                    a[loc] = a[left];  
                    a[left] = temp;  
                    loc = left;  
                }  
            }  
        }  
        returnloc;  
    }  
    static void quickSort(int a[], int beg, int end)  
    {  
          
        int loc;  
        if(beg<end)  
        {  
            loc = partition(a, beg, end);  
            quickSort(a, beg, loc-1);  
            quickSort(a, loc+1, end);  
        }  
    }  
}    

Merge Sort algorithm



public class MergeSort  
{  
void merge(int arr[], int beg, int mid, int end)  
{  
  
int l = mid - beg + 1;  
int r = end - mid;  
  
intLeftArray[] = new int [l];  
intRightArray[] = new int [r];  
  
for (int i=0; i<l; ++i)
{
LeftArray[i] = arr[beg + i];  
}
 
for (int j=0; j<r; ++j)  
RightArray[j] = arr[mid + 1+ j];  
  
  
int i = 0, j = 0;  
int k = beg;  
while (i<l&&j<r)  
{  
if (LeftArray[i] <= RightArray[j])  
{  
arr[k] = LeftArray[i];  
i++;  
}  
else  
{  
arr[k] = RightArray[j];  
j++;  
}  
k++;  
}  
while (i<l)  
{  
arr[k] = LeftArray[i];  
i++;  
k++;  
}  
  
while (j<r)  
{  
arr[k] = RightArray[j];  
j++;  
k++;  
}  
}  
  
void sort(int arr[], int beg, int end)  
{  
if (beg<end)  
{  
int mid = (beg+end)/2;  
sort(arr, beg, mid);  
sort(arr , mid+1, end);  
merge(arr, beg, mid, end);  
}  
}  
public static void main(String args[])  
{  
intarr[] = {90,23,101,45,65,23,67,89,34,23};  
MergeSort ob = new MergeSort();  
ob.sort(arr, 0, arr.length-1);  
  
System.out.println("\nSorted array");  
for(int i =0; i<arr.length;i++)  
{  
    System.out.println(arr[i]+"");  
}  
}  
}     

Insertion Sort Algorithm



public class InsertionSort {  
    public static void insertionSort(int array[]) {  
        int n = array.length;  
        for (int j = 1; j < n; j++) {  
            int key = array[j];  
            int i = j-1;  
            while ( (i > -1) && ( array [i] > key ) ) {  
                array [i+1] = array [i];  
                i--;  
            }  
            array[i+1] = key;  
        }  
    }  
       
    public static void main(String a[]){    
        int[] arr1 = {9,14,3,2,43,11,58,22};    
        System.out.println("Before Insertion Sort");    
        for(int i:arr1){    
            System.out.print(i+" ");    
        }    
        System.out.println();    
            
        insertionSort(arr1);//sorting array using insertion sort    
           
        System.out.println("After Insertion Sort");    
        for(int i:arr1){    
            System.out.print(i+" ");    
        }    
    }    
}   

Selection Sort algorithm



public class SelectionSort {  
    public static void selectionSort(int[] arr){  
        for (int i = 0; i < arr.length - 1; i++)  
        {  
            int index = i;  
            for (int j = i + 1; j < arr.length; j++){  
                if (arr[j] < arr[index]){  
                    index = j;//searching for lowest index  
                }  
            }  
            int smallerNumber = arr[index];   
            arr[index] = arr[i];  
            arr[i] = smallerNumber;  
        }  
    }  
       
    public static void main(String a[]){  
        int[] arr1 = {9,14,3,2,43,11,58,22};  
        System.out.println("Before Selection Sort");  
        for(int i:arr1){  
            System.out.print(i+" ");  
        }  
        System.out.println();  
          
        selectionSort(arr1);//sorting array using selection sort  
         
        System.out.println("After Selection Sort");  
        for(int i:arr1){  
            System.out.print(i+" ");  
        }  
    }  
}  

Bubble Sort algorithm



public class BubbleSort {  
    static void bubbleSort(int[] arr) {  
        int n = arr.length;  
        int temp = 0;  
         for(int i=0; i < n; i++){  
                 for(int j=1; j < (n-i); j++){  
                          if(arr[j-1] > arr[j]){  
                                 //swap elements  
                                 temp = arr[j-1];  
                                 arr[j-1] = arr[j];  
                                 arr[j] = temp;  
                         }  
                          
                 }  
         }  
  
    }  
    public static void main(String[] args) {  
                int arr[] ={3,60,35,2,45,320,5};  
                 
                System.out.println("Array Before Bubble Sort");  
                for(int i=0; i < arr.length; i++){  
                        System.out.print(arr[i] + " ");  
                }  
                System.out.println();  
                  
                bubbleSort(arr);//sorting array elements using bubble sort  
                 
                System.out.println("Array After Bubble Sort");  
                for(int i=0; i < arr.length; i++){  
                        System.out.print(arr[i] + " ");  
                }  
   
        }  
}  

binary search algorithm

Binary Search using Iteration


class BinarySearch{  
 public static void binarySearch(int arr[], int first, int last, int key){  
   int mid = (first + last)/2;  
   while( first <= last ){  
      if ( arr[mid] < key ){  
        first = mid + 1;     
      }else if ( arr[mid] == key ){  
        System.out.println("Element is found at index: " + mid);  
        break;  
      }else{  
         last = mid - 1;  
      }  
      mid = (first + last)/2;  
   }  
   if ( first > last ){  
      System.out.println("Element is not found!");  
   }  
 }  
 public static void main(String args[]){  
        int arr[] = {10,20,30,40,50,60};  
        int key = 30;  
        int last=arr.length-1;  
        binarySearch(arr,0,last,key);     
 }  
}

Binary Search using Recurssion


class BinarySearchUsingRecurssion{  
    public static int binarySearch(int arr[], int first, int last, int key){  
        if (last>=first){  
            int mid = first + (last - first)/2;  
            if (arr[mid] == key){  
            return mid;  
            }  
            if (arr[mid] > key){  
            return binarySearch(arr, first, mid-1, key);//search in left subarray  
            }else{  
            return binarySearch(arr, mid+1, last, key);//search in right subarray  
            }  
        }  
        return -1;  
    }  
    public static void main(String args[]){  
        int arr[] = {10,20,30,40,50};  
        int key = 30;  
        int last=arr.length-1;  
        int result = binarySearch(arr,0,last,key);  
        if (result == -1)  
            System.out.println("Element is not found!");  
        else  
            System.out.println("Element is found at index: "+result);  
    }  
} 

linear search algorithm


public class LinearSearch{    
public static int linearSearch(int[] arr, int key){    
        for(int i=0;i < arr.length;i++){    
            if(arr[i] == key){    
                return i;    
            }    
        }    
        return -1;    
    }    
    public static void main(String a[]){    
        int[] a1= {10,20,30,50,60,70,80};    
        int key = 50;    
        System.out.println(key+" found at index: "+linearSearch(a1, key));    
    }    
}

Interview questions on recursion

fibonacci series Factorial GCD Tower of hanoi decimal to binary using recursion

Recursion

The process in which a method calls itself is called recursion.
Recursion occurs when a method calls itself.

Example: a method calling itself
Method1()
{
 Method1();
}

Recursion is used to solve the problem where the solution of a problem depends on the solution of the smaller instances of the same problem

For example we are trying to find factorial of 5.
problem: factorial(5)

factorial(5) = 5* Factorial(4)

to find the solution for factorial(5), we need to find solution for another smaller instance of same problem Factorial(4).

Factorial(4) = 4 * factorial(3)

to find the solution for factorial(4), we need to find solution for another smaller instance of same problem Factorial(3).

similarly

Factorial(3) = 3 * factorial(2)

Factorial(2) = 2 * factorial(1)

Factorial(1) = 1 * factorial(0)

factorial(0) = 1

once terminal condition or base condition occurs, it is the end of recursion.
from this point there is no recursion. and it return the value of that condition.

here in this example  factorial(0) returns 1. and the execution continues

Factorial(1) = 1 * 1  // as factorial(0) = 1

Factorial(2) = 2 * 1  // as Factorial(1) = 1

Factorial(3) = 3 * 2  // as Factorial(2) = 2

Factorial(4) = 4 * 6  // as Factorial(3) = 6

Factorial(5) = 5 * 24 // as Factorial(4) = 24

final out put for Factorial(5) is 120.

factorial(5)
 = (5* Factorial(4))
 = (5* (4 * Factorial(3)))
  =(5* (4 * (3 * Factorial(2))))
   = (5* (4 * (3 * (2 * Factorial(1)))))
    = (5* (4 * (3 * (2 * (1 * Factorial(0))))))
    = (5* (4 * (3 * (2 * (1 * 1)))))
   = (5* (4 * (3 * (2 * 1))))
  = (5* (4 * (3 * 2)))
 = (5* (4 * 6))
=(5 * 24)

= 120
The recursion can be direct (when the method calls itself) or indirect (when the method calls some other method that then calls the first method).
Direct Recursion:
Method1()
{
 Method1()
}

Indirect Recursion:
Method1()
{
 Method2()
}

Method2()
{
 Method1()
}

Recursion can also be single (when the method calls itself once) or multiple (when the method calls itself multiple times).
Examples:
Factorial
Fibonacci series
GCD
Tower Of Hanoi

Find a Pair with given sum in an Array

Find a Pair with given sum in an Array




class FindPair
{
 // Naive method to find a pair in an array with given sum
 public static void findPair(int[] A, int sum)
 {
  // consider each element except last element
  for (int i = 0; i < A.length - 1; i++)
  {
   // start from i'th element till last element
   for (int j = i + 1; j < A.length; j++)
   {
    // if desired sum is found, print it and return
    if (A[i] + A[j] == sum)
    {
     System.out.println("Pair found at index "
         + i + " and " + j);
     return;
    }
   }
  }

  // No pair with given sum exists in the array
  System.out.println("Pair not found");
 }

 // main function
 public static void main (String[] args)
 {
  int A[] = { 8, 7, 2, 5, 3, 1 };
  int sum = 10;

  findPair(A, sum);
 }
}

Introduction to Data Structures





What is a Data Structure ?


  • Data structure is a way of organizing and accessing the data, to perform a particular operation.
  • The data structures are used in algorithm design, Creating a specific data structure helps in improving the data access and storing performance of the algorithms.


Why Data Structures ?


  • Data structures are used in solving complex mathematical problems.
  • Organizing data using appropriate Data Structures in our algorithms makes simpler, easier to maintain, and often increases the algorithms performance.


Types of Data Structures: